The term ‘angioma’ has been used for a long time for vascular anomalies without precisely the diagnosis, leading to improper management. In 1982, a classification was proposed by Mulliken and Glowacki, and accepted by the International Society for the Study of Vascular Anomalies (ISSVA).1–3 This classification is based on clinical, radiological and anatomopathological characteristics, and divides vascular anomalies into vascular tumours and vascular malformations (Table 1). Haemangioma is the most common vascular tumour, which usually appears postnatally, exhibiting rapid growth due to cellular proliferation, followed by inevitable involution (infantile haemangioma) (Figure 1a). Haemangiomas have high-velocity flow in multiple vascular channels. In contrast, vascular malformations are present at birth and grow proportionally with the patient. They are subdivided, depending on the affected vessel type, into capillary (Figure 1b), venous (Figure 1c), lymphatic (Figure 1d and e) and arterial malformations (Figure 1f). Rheologically, they are slow- or fast-flow lesions, discernable with duplex ultrasound scan. When malformations affect more than one vessel type, the combined lesions are named according to the affected vessel, e.g. capillary-venous and capillary-lymphaticovenous malformation. Venous malformation (VM) can also occur in syndromes such as Klippel–Trenaunay syndrome (capillaro-lymphaticovenous malformation [CLVM] with limb hypertrophy) (Figure 1g) and Maffucci syndrome (multiple endochondromas associated with multiple haemangioendothelioma and high incidence of malignancy) (Figure 1h) (Table 1).

In 1988, another classification (Hamburg classification) of vascular lesions was proposed.4,5 It includes vascular malformations (called extratruncular
Table 1 ISSVA classification of Vascular Anomalies

<table>
<thead>
<tr>
<th>Tumours</th>
<th>Malformations</th>
<th>Malformation of major named vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemangioma</td>
<td>Simple Capillary</td>
<td>Defects of cause, position and number</td>
</tr>
<tr>
<td>HOI</td>
<td>CM</td>
<td>Venous</td>
</tr>
<tr>
<td>Congenital haemangioma</td>
<td>CM of CM–A/M (RASA1)</td>
<td></td>
</tr>
<tr>
<td>NICH</td>
<td>CMTC</td>
<td></td>
</tr>
<tr>
<td>RICH</td>
<td>Sturge-Weber</td>
<td></td>
</tr>
<tr>
<td>Tumours potentially associated with Kasabach–Merrit phenomenon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaposiform haemangioendothelioma</td>
<td>BRBN</td>
<td>Arterial</td>
</tr>
<tr>
<td>Tufted angioma</td>
<td>CCM</td>
<td></td>
</tr>
<tr>
<td>Venous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCM1 (KRIT) ± HCCVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCM2 (Malcavernin)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCM3 (PDCD10)</td>
<td></td>
</tr>
<tr>
<td>Malignant tumours</td>
<td>VM, sporadic multifocal (somatic TIE2)</td>
<td>Lymphatic</td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>VMCM (TIE2)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM, microcystic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM, macrocystic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymphoedema:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milroy syndrome (VEGFR3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymphoedema–distichiasis (FOXC2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypotrichosis, Lymphoedema-telangiectasia (HIT) (SOX18)</td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td>Arterial</td>
</tr>
<tr>
<td></td>
<td>AVF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AVM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CM–A/M (RASA1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HHT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HHT1 (ENG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HHT2 (ACVRL1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JPHT (SMAD4)</td>
<td></td>
</tr>
<tr>
<td>Syndromic</td>
<td></td>
<td>Lymphoedema with mental retardation (Hennekam) (CCBE1)</td>
</tr>
<tr>
<td></td>
<td>CLOVES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLVM-limb hypertrophy (Klippel–Trenaunary)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymphoedema with mental retardation (Hennekam) (CCBE1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maffucci</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parkes-Weber—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of CM–A/M (RASA1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-RASA1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sturge-Weber</td>
<td></td>
</tr>
</tbody>
</table>

HOI, haemangioma of infancy; NICH, Non-involuting congenital haemangioma; RICH, rapidly involuting congenital haemangioma; CM, capillary malformation; CM–A/M, capillary malformation–arteriovenous malformation; CMTC, cutis marmorata telangiectatica congenita; BRBN, blue rubber bled naevus; CCM, cerebral cavernous malformation; HCCVM, hyperkeratotic cutaneous capillarovenous malformation; VM, venous malformation; VMCM, venous malformation cutaneousmucosal; LM, lymphatic malformation; AVF, arteriovenous fistula; AVM, arteriovenous malformation; HHT, hereditary haemorrhagic telangiectasia; JPHT, juvenile polyposis haemorrhagic telangiectasia; CVM, capillarovenous malformation; CLVM, capillaro–lymphaticovenous malformation; CLOVES, congenital lipomatosis with overgrowth, vascular malformation and epidermal naevus, scoliosis; MCM, macrocephaly-capillary malformation

Gene abbreviation in parenthesis = causative gene
lesions) as well as lesions of great vascular channels (called truncular lesions). It is mainly used by vascular surgeons of German and Italian schools. Interdisciplinary teams highly specialized in vascular anomalies follow the ISSVA classification, which is more elaborate and involves aetiopatho-genetic discoveries for vascular tumours and malformations. The ISSVA classification is based on clinical characteristics, rheology and aethiopathogenesis, and has helped discovering new subentities. The Hamburg classification is based on a hypothesis of embryological characteristics without useful clinical applicability. Moreover, since its establishment in 1982, the ISSVA classification is actively replacing old eponyms. The subentities that have been recognized on the basis of clinico-genetic discoveries have been named following the ISSVA classification, rather than by creating new eponyms (e.g. cutaneomucosal VM [VMCM] and capillary malformation-arteriovenous malformation [CM-AVM]) (Table 1).

The clinical diagnosis of a vascular malformation can be difficult even in specialized interdisciplin ary centres for vascular anomalies, as these lesions can mimic each other and some malignant tumours. As we previously summarized, experienced clinician can make the diagnosis for most patients based on clinical history (presence at birth, growth during life, triggers such as puberty or trauma, and family history) and examination (Table 2). Important clinical clues are colour (variations of pink, red, blue and purple), aspect (flat, raised, homogeneous, patchy, hyperkeratotic and ulcerated), localization, size, distribution (uni- or multifocal), palpation (hard, firm, compressible and presence of a thrill), temperature (warm or normal), painfulness (spontaneous or provoking factors) and auscultation (bruit).

Clinical and histological presentation of VMs

VMs are the most frequent slow-flow vascular malformations referred to specialized centres. Most of them are sporadic and unifocal (VMs, 93%), although 1% are multifocal (Table 2). Inherited forms, comprised of VMCMs (1%) and glomuvenous malformations (GVMs, 5%) are often multifocal. There is no sex preponderance. VMCMs and GVMs have an age-dependant variation in penetration, which reaches its maximum by 20 years of age (87% for VMCMs and 93% for GVMs).

VMs are light-to-dark-blue lesions that can be emptied by compression or in the upright position (Figure 2). There is no thrill or bruit, and on palpation the affected area is not warmer than non-lesional areas. Palpation is not painful unless thrombosis occurs. VMs can affect any tissue or organ, such as cutaneous and subcutaneous tissue (Figure 3a–c),
muscle (Figure 3d and e), joint (Figure 3f and g) or intestine. Depending on their size and location, and the effort and hormonal status of the patient, VMs can be painful. Migraine is a common feature in facial VMs located in the temporal muscle. On the extremities (Figure 3); they often cause muscle

Table 2 Venous anomalies: clinical, genetic and histologic characteristics and management

<table>
<thead>
<tr>
<th>Venous anomalies</th>
<th>Genetic</th>
<th>No., localization, colour and palpation</th>
<th>Other features</th>
<th>Histology</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unifocal sporadic</td>
<td>Somatic activation TIE2 (49%)</td>
<td>Solitary, all tissues and internal organs, normal to bluish colour, compressible, phleboliths</td>
<td>Pain at awakening and effort, elevated d-dimer level, local thrombosis (phlebolith), rare pulmonary embolism</td>
<td>Enlarged venous channels, flattened layer of endothelial cells, sparse smooth muscle cells</td>
<td>Elastic compression, NSAI, LMWH, sclerotherapy, surgery</td>
</tr>
<tr>
<td>Multifocal sporadic</td>
<td>Somatic activation TIE2</td>
<td>Multifocal, mucosal, cutaneous and muscular, normal to bluish colour, less compressible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMCM</td>
<td>Germinal activation TIE2</td>
<td>Multifocal, mucosal and cutaneous, bluish colour, less compressible</td>
<td>Pain at compression, normal d-dimer level</td>
<td>Enlarged venous channels and undifferentiated smooth muscle cells = ‘glomus cells’</td>
<td>No compression, NSAI, surgery, rarely sclerotherapy</td>
</tr>
<tr>
<td>Glomuvenous</td>
<td>Loss of function glomulin</td>
<td>Multifocal, cutaneous, bluish to purple colour, nodular or plaquelike, not compressible, no phlebolith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capillary + venous CVM</td>
<td>Unknown</td>
<td>Solitary, cutaneous, subcutaneous, red to bluish-purple colour, capillary malformation overlying venous malformation, less compressible</td>
<td>Pain at awakening and effort, elevated d-dimer level</td>
<td>Increased number of dilated capillaries + dilated venous-like channels with relative lack of smooth muscle cells</td>
<td>Laser, elastic compression, NSAI, LMWH, sclerotherapy, surgery</td>
</tr>
<tr>
<td>Capillary + venous CM+VM</td>
<td>Unknown</td>
<td>Capillary malformation and distant multifocal venous malformations, less compressible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphaticovenous</td>
<td>Unknown</td>
<td>Solitary, bluish-purple colour, lymphatic dermal vesicles and subcutaneous venous malformation, not compressible</td>
<td>Lymphatic oozing and infection</td>
<td>Lymphatic dermal vesicles + dilated venous-like channels with relative lack of smooth muscle cells</td>
<td></td>
</tr>
<tr>
<td>Syndromic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klippel–Trenaunay</td>
<td>Unknown</td>
<td>Capillary-lymphaticovenous malformation + limb hypertrophy</td>
<td>Pain, elevated d-dimer level, pulmonary embolism</td>
<td></td>
<td>Elastic compression, NSAI, LMWH, sclerotherapy, surgery</td>
</tr>
<tr>
<td>Blue rubber bleb naevus</td>
<td>Unknown</td>
<td>Multifocal venous malformations, mucosal and cutaneous, hyperkeratotic bluish blebs on palms and soles</td>
<td>Pain, elevated d-dimers, chronic anaemia, GI bleeding</td>
<td>Enlarged venous channels, flattened layer of endothelial cells, sparse smooth muscle cells</td>
<td>Iron supplement, LMWH, sclerotherapy, surgery</td>
</tr>
<tr>
<td>Maffucci</td>
<td>Unknown/no PTHR1 mutation</td>
<td>Multifocal, bluish nodules deforming hands and feet + multiple enchondromas</td>
<td>Pain, normal d-dimer level, severe deformities of hands and feet, spontaneous fractures, malignancies</td>
<td>Spindle cell haemangioendothelioma + enchondromas</td>
<td>Surgery</td>
</tr>
</tbody>
</table>

CVM, capillary venous malformation; CM+VM, capillary malformation and distant multifocal venous malformations; NSAI, non-steroidal anti-inflammatory medication; LMWH, low-molecular-weight heparin; GI, gastrointestinal; VMCM, inherited cutaneousmucosal venous malformations; grey shadows refer to group of shared features
weakness, and hypo- or hypertrophy. They can also threaten life because of bleeding, expansion or obstruction of vital structures. Pharyngeal or laryngeal location can compromise the airway and cause snoring or even sleeping apnoea. Gastrointestinal VMs can lead to chronic anaemia.

Multifocal VMs, whether familial or sporadic, are mostly raised, small in diameter (<5 cm) and less compressible. Whether sporadic or inherited, patients with multifocal lesions can develop additional VMs with time. In contrast to sporadic VMs, VMCMs are more superficial and seldom invade muscles. They have never been reported to extend within a joint or a bone. Due to their small size, they are often asymptomatic.

GVMs differ clinically from VMs. Their colour varies from pink to purple or dark blue. They are present at birth, raised, cobblestone or plaque-like, and slightly hyperkeratotic. In contrast to VMCMs, they are mainly located in the extremities and not compressible. They are more superficial than VMs, involving skin and subcutis, and rarely mucosa. They are painful when compressed and thus, contrary to VMs, elastic compressive garments aggravate pain. They should not be confused with the solitary and painful glomangioma of the nail bed.
Most VMs undergo a continuous cycle of spontaneous thrombosis and thrombolysis. Persistent thrombi can calcify, resulting in the formation of phleboliths, pathognomonic on plain X-ray.21–23 VMs usually do not cause pulmonary embolism because the channels that are thrombosed are sequestered from the main conducting channels.

Histologically, the different types of VMs (unifocal, multifocal sporadic or familial) are characterized by enlarged venous channels lined by a single flattened layer of endothelial cells surrounded by sparse, irregularly distributed smooth muscle cells.16

GVMs, previously known as ‘glomangiomomas’, are characterized by the presence of undifferentiated smooth muscle cells (glomerus cells) surrounding convoluted venous channels.24

Clinical presentation of combined and syndromic malformations

Combined vascular malformations (Table 2) are most often capillaro-venous malformations (CVMs) and CLVMs. These lesions are composed of a capillary malformation and an underlying venous or lymphaticovenous malformation. They usually involve cutis and subcutis, and rarely muscles. The CLVMs often cause oozing.10,25,26

Some patients have capillary malformations (CM) associated with distinct multifocal VMs (CM + VM).

Syndromes with a venous anomaly comprise blue rubber bleb naevus (BRBN) syndrome, Klippel–Trenaunay syndrome and Maffucci syndrome. They are all sporadic. Clinical examination, duplex ultrasound and magnetic resonance imaging (MRI) are necessary to confirm the diagnosis, and to propose a treatment and follow-up.†

The BRBN syndrome (Bean syndrome) associates cutaneous and visceral VMs. The cutaneous VMs are multiple, small, rubbery, often located on the palms and soles.27,28 There is often a large lesion present at birth, and an increasing number of multiple dark blue lesions disseminated all over the body. The multiple sessile lesions of the intestine, which cause chronic bleeding and anaemia, are a diagnostic criterion. In rare cases, BRBN can involve other organs, including bladder, liver, spleen, kidneys and lungs.

The Klippel–Trenaunay syndrome is an eponym for CLVM located on an extremity with hypertrophy, often conformed with a pure capillary malformation with a hyper- or hypotrophy of an extremity.29–31 Duplex ultrasound is used to detect hypoplasia of the deep venous system, and the presence of ectopic and ectasic subcutaneous veins. Lower extremities are affected in 95% of cases, but upper limbs, abdomen and genitalia can be involved. Hypertrophy of the limb is usually present at birth. Potential complications include bleeding, oozing of the lymphatic vessels, ulceration, infection, thrombosis and pulmonary embolism.30,32 These patients need careful management and follow-up to ensure early detection of these complications.

Contrary to Klippel–Trenaunay syndrome, a pure capillary malformation does not affect lymphatic or venous channels. Moreover, tissue hypertrophy is commonly moderate, and not present at birth.

Maffucci syndrome is a rare developmental disorder characterized by multiple enchondromas associated with subcutaneous haemangioendothelioma of the distal extremities.33,34 The disease starts during childhood with the development of enchondromas of the bones of hands and feet, as well as of the long bones. Deformities and shortening of extremities often occur. The subcutaneous vascular nodules appear later, around puberty, on the fingers and toes; phleboliths may become present. Histopathological examination shows features of spindle cell haemangioendothelioma, e.g. nodules of dense spindle cell infiltration in combination with dysplastic vessels.35 These patients have a high incidence of malignancies (40%) mainly of chondrosarcoma, but also glioma, fibrosarcoma and angiosarcoma.36–38

Differential diagnosis of blue lesions on the skin

Patients with blue lesions on the skin are often referred to the interdisciplinary centres as ‘angioma’. The referred physician must eliminate non-vascular lesions and differentiate within these various blue vascular anomalies. With the clinical history, medical examination and duplex ultrasound, a clinician can make the diagnosis in most cases. Histopathological examination is sometimes necessary.

Dermal melanocytic nevi are blue lesions, which arise from dermal melanocytes that have become arrested in the dermis during fetal life and tissue modelling, and have never reached their normal site at the basal layer of the skin.39 The Mongolian spot is a macular blue–grey pigmentation present at birth in infants of darker-skinned races. The
The lumbosacral region is the most common site, but buttocks and shoulders may be affected. Nevi of Ota and Ito are dermal melanocytoses that differ from the Mongolian spot by having a speckled rather than uniform appearance. The naevus of Ota is a unilateral discolouration of the face composed of blue and brown, partially confluent, macular lesions. Ota called the lesion naevus fusoceruleus ophthalmomaxillaris because of its distribution into the periorbital region, sclera, conjunctiva, temple, forehead, malar area and nose. The naevus of Ito is localized in the supraclavicular, scapular and deltoid regions. The common blue naevus is a well-circumscribed blue nodule or macular plaque seen on any site of the body. It appears around puberty.

Subcutaneous haemangioma can mimic a VM as both are blue. Usually haemangiommas grow postnatally and involute spontaneously. However, parents do not always know if the lesion was present at birth; some VMs increase in volume during infancy and spontaneous involution of subcutaneous haemangioma is long (3–4 years). Duplex ultrasound is the best examination to differentiate the fast-flow haemangioma from the slow-flow VM.

Haemorrhage within a lymphatic cyst of a lymphatic malformation mimics a VM, as the lymphatic malformation becomes blue. A less compressible feature of the lesion is in favour of a lymphatic malformation. Duplex ultrasound cannot always differentiate these two slow-flow malformations. Histopathological examination of lymphatic malformations will show positive D2-40 staining (podoplanin), a specific marker for lymphatic endothelial cells.33

Imaging studies

Duplex ultrasound is the best examination to confirm slow flow, to identify the anatomy of feeding vessels and to offer a graphic visual demonstration of vascularity. VMs appear, in 80% of cases, as hypoechoic or heterogeneous and compressible lesions. However, even on experienced radiological hands, differentiation between venous and lymphatic malformations can be difficult.40 The pathognomonic signs of lymphatic malformations, including non-compressible, hypo or anechoic cysts; thick septa; and liquid levels, are not always present. This can be further complicated by intracystic bleeding.

MRI imaging with spin-echo T1- and T2-weighted sequences is the gold standard for pretherapeutic evaluation of VMs and should not be replaced by MRI angiography, the flow-sensitive images of which do not add any useful information. T1- and T2-weighted MRI images depict the anatomic relation between the vascular lesion and adjacent organs, nerves, tendons and muscles. On T2-weighted sequences with fat saturation, VMs show hyperintense channels containing septations.41–43 Goyal and collaborators graded lesions using MR imaging on the basis of the size and margins:44

- Grade 1: well defined; ≤5 cm in diameter
- Grade 2A: well defined; >5 cm in diameter
- Grade 2B: ill defined; ≤5 cm in diameter
- Grade 3: ill defined; >5 cm in diameter

Another option is to use contrast venograms like Berenguer and collaborators who categorized VMs into three major morphological types:45

- Lobulated: rounded clusters of vascular spaces with few or no connections to adjacent local veins;
- Varicose: irregular dilated channels recognizable as conducting veins;
- Combined: combination of the two types.

The report of Goyal and collaborators demonstrated that small and better-defined lesions (grade 1 versus grade 3) had a better therapeutic response to sclerotherapy. Future studies on VMs should use these classifications as bases for stratification.

Other imaging studies such as plain X-ray (pathognomonic phleboliths) or CT-scan (intravascular VMs) may be useful. Whole body blood pool scintigraphy, a transvenous angioscan utilizing radioisotope-tagged red blood cells, may be useful for multifocal lesions to detect associated disseminated VMs. However, it necessitates the use of radioisotopes and has to be coupled with MRI or Duplex scanning to precise the anatomical location.46

Aetiopathogenesis

The aetiopathogenesis of vascular anomalies has started to be unravelled by genetic studies. Genes and the causative mutations have been identified for several inherited vascular anomalies including VMCM, GVM, capillary malformation-arteriovenous malformation (CM-AVM), hyperkeratotic cutaneous VM (HCCVM) and cerebral cavernous malformation (CCM).6,7,14,16,24,47,48 Identification of these genetic bases has allowed for better delineation of the entities, therefore optimizing their clinical management (Table 1).12,18,49,50

GVMs are autosomally inherited lesions caused by loss-of-function mutations in glomulin (chromosome...
A somatic intraglomulin deletion was discovered in one resected GVM, suggesting a possible predominant inheritance. This and the function of glomulin can be studied in the recently generated glomulin-deficient knock-out mice (Brouillard et al., unpublished). Although the conventional homozygous knock-out embryos die early in development, the conditional knock-out, with skin-specific deletion of glomulin function, hopefully will provide an animal model of GVM.

Inherited VMCM is mediated by germline mutations in the TEK gene (chromosome 9p), which encodes the endothelial cell tyrosine kinase receptor TIE2. The mutations result in increased phosphorylation of TIE2, leading to uncoupling between endothelial cells and the normal recruitment of smooth muscle cells. In one patient, for whom tissue was available, a loss-of-function somatic second hit was identified. It is thought that the role of the second hit is to remove the protective wild-type allele, which allows locally the function of TIE2 to be present, the function is likely normal.

On the basis of the implication of a somatic mutation in VMCMs, it was recently discovered that somatic mutations in TIE2 also cause 40% of sporadic VMs, the lesions frequently encountered in interdisciplinary centres for vascular anomalies. In one patient, for whom tissue was available, a loss-of-function somatic second hit was identified. It is thought that the role of the second hit is to remove the protective wild-type allele, which allows locally the germline mutation to cause dysfunction. In fact, TIE2 forms receptor multimeres. If wild-type receptor is present, the function is likely normal.

In rare cases, small cutaneous VMs can be caused by mutations in the CCM genes. This occurs when the cutaneous VMs are associated with CCM. These cutaneous vascular anomalies can also be combined and called HCCVM.

For other malformations with a venous component, the aetiopathogenic mechanisms remain unknown. For Maffucci syndrome, which combines subcutaneous venous anomalies (spindle cells hae-mangiendothelioma) with enchondromas, a genetic difference has been found in regard to Ollier disease, which is characterized by multiple enchondromas only. No mutation in the PTHRI gene, critical for the regulation of endochondral ossification, was found in lesional or leukocyte DNA of patients with Maffucci syndrome in contrast to Ollier patients. Thus, these two resembling syndromes have a different aetiopathogenic cause. Finally, it was reported that Klippel–Trenaunay syndrome, a CLVM, usually a sporadic condition, would be due to enhanced angiogenic activity due to genetic defects of VG5Q. Yet, this change has since been reported to be a polymorphism found in healthy controls.

A novel diagnostic biomarker

VMs are associated with spontaneous thrombosis and thrombolysis. This is witnessed by elevated D-dimer levels (>0.5 μg/mL) in 42% of patients, and associated with size, deepness and presence of palpable phleboliths. This phenomenon was named localized intravascular coagulopathy (LIC). D-Dimer levels are often very high (25% of patients >1.0 μg/mL), even if these otherwise healthy patients do not have other conditions to increase D-dimer levels, e.g. cancer, inflammatory disease, thrombophilia, ischaemic heart disease, arterial aneurysm or dissection, or pregnancy. We consider this as an important LIC, as levels are twice the upper limit. In other conditions, such as oral contraception, ulceration and old age, D-dimer levels can also mildly increase, but levels are much lower than that reported for VMs. In fact, they can still stay within the normal range.

LIC is usually well tolerated during everyday life. However, a few patients with extensive VMs, mainly affecting an extremity, have a severe LIC with a very high D-dimer level (>1.8 μg/mL) and a low fibrinogen level. These patients are at risk of potential aggravation of LIC to disseminated intravascular coagulopathy (DIC) with dramatic bleeding during a surgical excision, and marked consumption of platelets, coagulation factors and fibrinogen. Thus, measurement of D-dimer levels is mandatory for the management of VMs.

VM is the only disease that can permanently highly increase D-dimer levels in otherwise healthy patients. Thus, it is a biomarker helpful for diagnosis. When D-dimer levels are elevated in vascular anomaly patients with no associated pathology, a venous component is present in 96.5% of patients. This is true for pure, isolated VMs (uni- or multifocal), as well as for combined and syndromic lesions (e.g. CVM and Klippel–Trenaunay

Phlebology 2010; 25:224–235
syndrome = CLVM + hypertrophy). In contrast, sensitivity is lower (42%). Thus, when D-dimer levels are normal, a small VM cannot be ruled out. Among all patients with vascular malformations, D-dimer levels were normal in all GVMs, LMs and Maffucci syndrome, as well as in fast-flow lesions, such as AVMs and Parkes–Weber syndrome (large capillary malformation of the limb associated with multiple arteriovenular malformations and tissue hypertrophy). Thus, D-dimer measurement is a useful biomarker for the differential diagnosis of VMs. It can help, e.g. in differentiating GVMs from other multifocal venous lesions. It can also detect a venous component in combined and syndromic malformations. This is especially interesting for Klippel-Trenaunay syndrome (KT) because most of them have high D-dimer levels contrary to Parkes–Weber syndrome, which is commonly misdiagnosed as KT. Thus, this easy and cheap biomarker test must be used as a routine test in clinical evaluation of vascular anomaly patients.

Management of VMs

Management of these lesions needs interdisciplinary discussion. A dedicated team, which comprises of at least a dermatologist, an interventional radiologist, a haematologist, a plastic and/or vascular surgeon, and an orthopaedic surgeon, reviews all the malformations in regard to diagnosis, clinical and functional disturbance, prognosis, treatment options, and long-term follow-up. Psychological consultation may also be useful for these disfiguring and chronic lesions.

Tailored compression garment is the first-line treatment for symptomatic and extensive VMs of the extremities to reduce pain and thrombosis. It is contraindicated in GVMs, as it increases pain. It is not efficient in Maffucci syndrome. Low-dose aspirin and/or anti-inflammatory drugs are proposed if pain is not relieved, or if compression is not anatomically possible. When associated with elevated D-dimer levels, pain can be relieved with low-molecular-weight heparin 100AntiXa/kg for 20 days, or longer if pain relapses. Patients with important or severe LIC need careful management to prevent severe bleeding during a surgical procedure. To improve the haematological status and to avoid DIC, preventive treatment with enoxaparin (100AntiXa/kg) should be started 10 days before any surgical procedure for a total of 20 days.

Most patients with Klippel–Trenaunay syndrome have chronic LIC and need careful follow-up to detect venous thrombosis and/or pulmonary embolism. In these patients, elevated D-dimer level cannot be used to screen for recent thrombosis. Thus, to detect it, duplex ultrasound is mandatory when clinical signs, e.g. pain, limb inflammation, palpable superficial clot and dyspnoea, appear. Due to this, it may be useful to screen for pulmonary embolism with a few complementary examinations, such as electrocardiogram, echocardiography and pulmonary scintigraphy for future reference.

Curative treatment of VM is rarely possible. Surgical excision is proposed in the following indications: small VMs or GVMs with possible complete surgical excision, VMs with well-defined margins, or VMs with post sclerosis fibrosis. Partial resection without preceding sclerotherapy is rarely performed because of the risk of relapse and/or surgical morbidity. Surgery is the treatment of choice for GVMs because it is more superficial and invades the adjacent structures less. Classical surgical techniques comprise fusiform excision, purse string, skin graft, skin expander and fasciocutaneous flaps, according to the lesion. Squeezing technique, using permanent sutures to compress the dilated channels, is sometimes used to reduce pain and functional impairment.

To diminish the volume of the malformation, percutaneous sclerotherapy is the gold standard treatment. The goal is to obliterate the channels by causing damage to the endothelium with subsequent inflammation and fibrosis. Among all the sclerosing agents, absolute ethanol is the most effective one with the lowest recurrence rate, but also with the most serious local and systemic side-effects. Toxicity is mainly due to the diffuseness of alcohol and the high therapeutic doses needed for the procedures. To reduce diffuseness, absolute ethanol has been mixed with zein and oleum papaviris, leaving behind a non-resorbable mass (Ethibloc, Ethicon, Hamburg, Germany). This product was frequently used in Europe, but not approved by the Food and Drug Administration (FDA, USA) and is no longer commercially available.

Detergent sclerosants, such as polidocanol and sodium morrhuate, are not as aggressive as ethanol and have a greater tendency for recanalization of the vascular channels. Microfoam forms of these detergents have been generated, using air bubbles, to increase the volume and surface contact with endothelium, with a lower dose of the solution. However, strokes, headaches, scotoma and other neurological complications have been reported in 2% of patients, confirming the potential risk of gas embolism.
carbon dioxide and reported a better solubility of the gas with the detergent solution, a better stability of the injected product, and less cardiovascular and neurological complications due to gas embolism. The use of this microfoam agent has not been reported in other centres.

Due to the high frequency of systemic side-effects, there is a great need for a sclerosing agent that would be as efficient as absolute ethanol, but less dangerous. Radio-opaque ethylcellulose–ethanol is a newly developed sclerosing gel with a higher viscosity. It can be injected in small quantities, as ethanol is trapped in the malformation, by ethylcellulose. As soon as it encounters an aqueous media, a framework of ethylcellulose develops within 150 seconds and the time of contact of ethanol with the vascular endothelium is prolonged, reducing the quantity of absolute ethanol needed. Ethylcellulose spontaneously dissolves within two to three months, unless an excessive amount is used.

As it is important to guide sclerotherapy, a radio-opaque oily agent Lipiodol (Laboratoire Guerbet, Roissy Charles de Gaulle, France) was added to ethylcellulose–ethanol. The same contrast agent was used with free absolute ethanol in one study, allowing injection of smaller doses of ethanol. Thus, visualization of the sclerosing agent increases accuracy and thereby safety, compared with guidance with duplex ultrasound or fluoroscopy often used for foam sclerotherapy.

Median total dose of ethylcellulose–ethanol used for injection was only 1 cm³ and, contrary to absolute ethanol, some procedures for superficial lesions could be performed under local anaesthesia. Our results of sclerotherapy on pain, functional and aesthetic impairment were equivalent to those reported for free ethanol.

This sclerosing agent was also safe, as no systemic side-effects were encountered, likely due to the small doses of ethanol injected in the malformations. Local side-effects, mainly necrosis and fistulization of ethylcellulose were encountered in 19% of procedures. These lesions were located in sensitive areas (face, mouth, feet and hands). The frequency has been reduced by using very small amounts of this agent (0.1–0.3 cm³), avoiding excessive ethylcellulose residues.

Conclusion

Recent studies have improved diagnostic accuracy, aetiopathogenic knowledge and therapeutic management of VMs. These lesions are often chronically painful, cause disfigurement and dysfunction, and are difficult to treat. Therefore, the improved differential diagnosis using d-dimer level as a biomarker is most helpful for proper management. The identification of the aetiopathogenic basis of the inherited forms as well as that of almost half of sporadic VMs has increased our knowledge on the mechanisms behind the development of these lesions. Animal models can now be generated and specific therapeutic approaches can be envisioned. To this end, the recently developed sclerosing agent, although unspecific, ameliorates treatment and lessens complications. Yet, many questions remain unanswered, such as the cause of the other 50% of VMs, association of d-dimer levels with subtypes of VMs, better subclassification of combined vascular malformations of the extremities, etc. Such data should lead to better management of these debilitating lesions.

Acknowledgements

These studies were partially supported by the Inter-university Attraction Poles initiated by the Belgian Federal Science Policy network 6/05; concerted Research Actions (A.R.C) – Convention No. 07/12-005 of the Belgian French Community Ministry; the National Institute of Health Programme Project P01 AR048564; EU FW6 integrated project LYPHANGIOGENOMICS, LSHG-CT-2004-503573; the F.R.S.-FNRS (Fonds de Recherche Scientifique) (to M.V., a ‘Maitre de recherche honoraire du F.R.S.-FNRS’) and la Communauté française de Wallonie-Bruxelles et de la Lotterie nationale, Belgium.

The authors thank Ms Liliana Niculescu for secretarial work.

Author contributions: Critical revision of the manuscript for important intellectual content: Dompmartin A, Vikkula M, Boon LM.

References

5 Beblo S. Classification of congenital vascular defects. Int Angiol 1990;9:141–6
45 Berenguer B, Burrows PE, Zurakowski D, Mulliken JB. Sclerotherapy of craniofacial venous malformations:

74 Dompmartin A, Gaillard C, Theron J, et al. Radioopaque ethylcellulose ethanol is a safe and efficient sclerosing agent for slow-flow vascular malformations. Submitted to *JVIR*

